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Abstract. High-spin states in 74
36Kr38 were studied using the 40Ca(40Ca,α2p)74Kr fusion evapora-

tion reaction at a beam energy of 165 MeV with GAMMASPHERE and MICROBALL and at a beam
energy of 185 MeV with EUROBALL and ISIS multi-detector arrays. Lifetimes of the high-spin
states for the ground-state band and the favoured negative-parity band have been determined using
the Doppler-shift attenuation method. The deduced transition quadrupole moments show a marginal
decrease as a function of spin, suggesting that the rotational bands do not terminate at the maximum
spin Imax.
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INTRODUCTION

The understanding of the collective behaviour of nuclei in terms of the microscopic
basis of the many-body system is a fundamental goal in nuclear structure. A possibility
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to study collective and single particle effects within one nuclear system is given by the
band termination phenomenon, which represents a transition from collective to single-
particle behaviour. Considerable effort has been devoted to studying band termination
in different mass regions, both experimentally and theoretically [1, 2]. Nevertheless it
has been predicted theoretically [2, 3, 4] that not all the bands have to terminate in a
non-collective state at Imax (maximum spin which can be built in a pure configuration).
Recently, the first experimental case has been observed in 74Kr where the measurements
of transitional quadrupole moments Qt and mean field calculations strongly suggest that
the rotational bands show collectivity at Imax [5].

This manuscript reports on the high-spin states of 74Kr and their lifetimes. We discuss
in detail the measurement of the Qt values for high spin states, since these values are
decisive in the discussion of the observation of non-termination of the smooth rotational
bands in 74Kr [5].

EXPERIMENT

High-spin states in 74Kr were studied using the 40Ca(40Ca,2pα)74Kr fusion–evaporation
reaction at two different setups. The first experiment was performed at Laboratori
Nazionale di Legnaro (LNL), using a 185 MeV beam delivered by the XTU Tandem
accelerator. An enriched 40Ca target was used, with a thickness of 900 µg/cm2. The γ
rays produced in the reaction were measured with the EUROBALL III array [6], which
was coupled to the 4π charged particle detector ISIS [7], and a Neutron Wall [8], which
covered the forward 1π section of EUROBALL III. The second experiment was carried
out at Argonne (ANL), using a 165 MeV beam delivered by the Tandem Linac Accel-
erator System (ATLAS). The γ rays of the reaction were detected with 99 Compton-
suppressed HPGe detectors of the GAMMASPHERE array [9], with the heavimet col-
limators removed to obtain summed γ-ray energy per event. The evaporated charged
particles were detected in coincidence with the γ rays and identified with the 95-element
CsI(Tl) MICROBALL detector [10]. A detailed description of both setups can be found
in Refs. [5, 11]

RESULTS AND DISCUSSION

Figure 1 (bottom inset) shows γ-ray coincidence spectra for the ground-state band and
the two favoured negative-parity signature partners bands, Band A and Band B, in 74Kr
deduced from the current analysis. Figure 1 (right) shows the partial decay scheme
for 74Kr deduced from the current work via γ-γ-γ coincidences. The DCO ratios (see
Table 1) have firmly established the spins and parities of the high-spin states. The lack
of statistics for the very top transitions did not allow to extract their multipolarity.

Lifetimes of the higher-lying states were measured using the Doppler-shift attenuation
method [12] for the ground-state band, Band A and Band B in 74Kr. The centroid shifts
for a given transition in each of the 16 rings in GAMMASPHERE were measured and
the ratio F(τ) = βt/β0 was plotted versus γ-ray energy. The β0 value is defined by
the initial velocity when the recoil was created and was calculated according to the
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FIGURE 1. Partial level scheme deduced from the current work for 74Kr (right). The bottom inset shows
the sum of γ-ray spectra obtained by adding double coincidence gated spectra on in-band transitions in
a) the ground-state band of 74Kr, b) the Band B (α = 0 signature), and c) the Band A (α = 1 signature).
In each case, the in-band transitions are denoted by *. The insets show the highest energy transitions in
the mentioned bands as seen in the EUROBALL experiment. The top inset shows the experimental F(τ)
values for the ground-state band as a function of γ-ray energy in 74Kr. The solid line shows the fit for a
Qtop

t = 2.1 eb (best fit), while the dot-dashed line shows the fit considering a lower Qtop
t = 1.7 eb. The

dashed line represents the saturation F(τ) value, when the recoils leave the target.

kinematics of the reaction. The experimental F(τ) values were fit taking into account
the slowing down process of the recoil in the target, since the γ rays were emitted while
the recoils were decelerating in the thin 40Ca target. The stopping powers were obtained
using the SRIM-2003 code [13]. The fitting program takes into account the momentum
distribution of the recoils, due to particle emission. It has been shown previously [14, 15]
that in the channels where α particles are present the angular dependence in the particle
detection efficiency of MICROBALL is not isotropic and must be included in the lifetime
analysis. Figure 1 (top inset) shows the measured F(τ) values as a function of γ-
ray energy for the ground-state band. The F(τ) values were measured by gating on
the top three transitions of the band of interest. Side feeding is only considered into
those top three states and was modelled assuming a rotational band sequence, with four
transitions. The side-feeding quadrupole moment was selected to be the same as in the
considered band. The fit of the experimetal data was modelled empirically according to
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TABLE 1. Spin, parities, energies, transition quadrupole moments Qt
and DCO ratios for the ground-state band (GSB), Band A and Band B in
74Kr.

Band GSB
iIπ

n Elvl(keV) Eγ (keV) RDCO ± Qt (eb) f Iπ
n

(32+
1 ) 26829 3703 – – – (30+

1 )
(30+

1 ) 23127 3268 – – 2.10±0.10 28+
1

28+
1 19859 2792 0.90 0.17 2.30±0.10 26+

1
26+

1 17067 2380 0.91 0.14 2.38±0.10 24+
1

24+
1 14687 2037 1.01 0.09 2.45±0.10 22+

1
22+

1 12650 1769 0.95 0.08 2.50±0.10 20+
1

20+
1 10881 1575 1.22 0.08 2.55±0.10 18+

1
18+

1 9306 1448 1.00 0.05 2.59±0.10 16+
1

16+
1 7858 1343 1.05 0.03∗ 2.63±0.10 14+

1
14+

1 6516 1336 1.05 0.03a 2.67±0.10 12+
1

Band A (α = 1)

(35−1 ) 30935 3906 – – – (33−1 )
(33−1 ) 27029 3373 – – 2.40±0.10 31−1
31−1 23656 2922 0.77 0.14 2.70±0.10 29−1
29−1 20734 2562 0.91 0.11 2.82±0.10 27−1
27−1 18172 2265 1.02 0.08 2.92±0.10 25−1
25−1 15907 2011 0.96 0.06 3.00±0.10 23−1
23−1 13896 1808 1.14 0.07† 3.07±0.10 21−1
21−1 12088 1658 1.01 0.05 3.14±0.10 19−1
19−1 10430 1532 1.04 0.05 3.19±0.10 17−1
17−1 8898 1410 1.06 0.04 3.25±0.10 15−1
15−1 7488 1277 0.99 0.04 3.30±0.10 13−1
13−1 6211 1124 gate – 3.35±0.10 11−1

Band B (α = 0)

(32−1 ) 25854 3279 – – 2.30±0.10 30−1
30−1 22575 2825 1.03 0.18 2.50±0.10 28−1
28−1 19750 2451 1.14 0.12 2.58±0.10 26−1
26−1 17299 2173 1.20 0.11 2.65±0.10 24−1
24−1 15126 1933 1.03 0.08 2.70±0.10 22−1
22−1 13193 1763 1.05 0.07 2.75±0.10 20−1
20−1 11430 1627 1.01 0.05 2.79±0.10 18−1
18−1 9803 1485 0.95 0.04 2.83±0.10 16−1
16−1 8318 1351 1.14 0.05 2.87±0.10 14−1

∗ doublet
† doublet with the 1799-keV transition

Qt(I) = Qtop
t + δQt

√
Itop− I [11]. The top superscript indicates the highest-spin state

observed experimentally in a given band for the current work, for which a centroid shift
could be measured. In the current data, this corresponds to Itop = 30+, 33− and 32−
for the ground-state band, Band A and Band B, respectively. The δQt represents the
variation of the Qt value within the band. In Fig. 1 (top inset), the solid line represents
the best fit to the experimental points (Qtop

t = 2.1 eb, δQt = 0.2 eb), while the dot-dashed
line shows the calculated curve considering a smaller Qtop

t (Qtop
t = 1.7 eb, δQt = 0.2 eb).
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It can be noted that if a lower Qtop
t is used, then the fit curve will necessarily lie below

the experimental points all along the band. Table 1 summarizes the Qt values of the
measured high-spin states in 74Kr.

The conclusion about non-termination of three smooth rotational bands in 74Kr [5],
that have been observed up to (or one transition short of) the maximum spin Imax, is
based both on the results of mean field calculations [5], and the present measurement
of Qt values. These rotational bands show marginal decrease of Qt with increasing spin.
This decrease is much smaller [5] in comparison with other smooth terminating bands,
like 62Zn [16] and 109Sb [17, 18]. The Qtop

t value obtained in the fitting procedure
of F(τ) is the smallest one which provides agreement with the experimental curve.
Any attempt to make it smaller (i.e. going towards non-collectivity, Qtop

t ∼ 0) moves
down the fit F(τ) curve relative to the experimental points, increasing the discrepancy
with experiment, see Fig. 1 (top inset). A detailed theoretical description of the non-
termination of rotational bands in 74Kr can be found in Ref. [5].
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